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The two-level atom can, for good reason, be consid-
ered the basic material structure for the study of quan-
tum optics [1]. The two-level atom has played a funda-
mental role in studies of physical processes, including
self-induced transparency (SIT), photon echoes, optical
nutation, saturation spectroscopy, and, most recently,
slow- and fast-light research. This latter field has
recently been the subject of great activity, as research-
ers have learned how to utilize various physical pro-
cesses to exert control over the velocity of propagation
of light pulses through material systems [2]. This inter-
est stems both from the intellectual intrigue in situa-
tions in which the velocity of light can be speeded up or
slowed down by many orders of magnitude and the
promise that such techniques might be useful for appli-
cations in fields such as telecommunications and opti-
cal computing [3–6]. Most of the recent work in this
field has made use of the process of electromagnetically
induced transparency (EIT) to induce a narrow trans-
parency region in an otherwise highly absorbing optical
material [7, 8]. The rapid variation of the refractive
index 

 

n

 

 associated with this transparency window then
leads to a strong modification of the group velocity 

 

n

 

g

 

in accordance with the standard relation

(1)

Under most laboratory situations, the conditions lead-
ing to EIT require that dephasing processes be avoided
to allow the delicate balance between excitation path-
ways leading to EIT to occur. However, a different pro-
cess [9–13] based on coherent population oscillations
(CPO) has recently been shown to lead to ultraslow
group velocities as well. The process of CPO is rela-
tively immune to disruption by dephasing processes,
and, as a result, it has been possible to observe slow
light effects based on this process even in room-temper-
ature solids [14, 15]. Many proposed applications of
slow light require time delays considerably greater than
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one pulse length. However, thus far the fractional
delays (time delay divided by pulse duration) achiev-
able by this effect have been limited to only a few tens
of percent. Since there appears to be no fundamental
limitation on the time delay that can be achieved using
EIT and related methods [16], one is motivated to try to
find means for extending the range of time delays
achievable using CPO. In the present paper, we present
a detailed theoretical study of slow-light effects based
on CPO. We find that, for low values of the pump inten-
sity, the fractional delay is limited to a few tens of per-
cent, consistent with current laboratory results. How-
ever, we find that, for larger values of the pump inten-
sity, such that the Rabi frequency associated with the
pump intensity becomes comparable to the 
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 dephas-
ing time of the atomic transition, much larger values of
the fractional pulse delay become achievable. In the
results presented here, we find that delays as large as
30 pulse widths are predicted.

We consider the situation described pictorially in
Fig. 1, in which a strong pump beam of frequency
copropagates along with a weak probe beam at fre-
quency 

 

ω

 

 + 

 

δ

 

 through a collection of two-level atoms.
The response of the probe field as modified by the pres-
ence of the pump field can be quantified in terms of an

effective susceptibility defined by 
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—Slow light produced by means of the process of coherent population oscillations has been observed
in room-temperature solids. The experiments performed to date have all been performed within the validity of
the rate equation approximation, and the fractional delays that have been observed have been limited to a few
tens of percent. Here, we show that, by operating with stronger pump fields, much larger fractional delays are
predicted. This result could have important consequences for the development of slow-light methods for prac-
tical applications.
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Fig. 1.

 

 A strong pump field propagating through a medium
comprised of two-level atoms can modify the propagation
velocity of a probe wave at frequency 
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), which has been shown to be given by the
expression [17, 18]

(2)

where

(3)

is the steady-state value of the population difference
induced by the pump field of Rabi frequency 
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and detuning 
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 and where 
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) is the function
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Here, 

 

T

 

1

 

 is the population relaxation time and 

 

T

 

2

 

 is the
dipole dephasing time.

The transparency window predicted by these equa-

tions is illustrated in Fig. 2, where we plot Im (
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 + 

 

δ

 

)
as a function of the pump-probe detuning 

 

δ

 

. For this
example and for most of the cases treated in this paper,
we treat the case of a pump field tuned to line center
(

 

∆

 

 = 0) and a highly collisionally broadened medium
such that 

 

T
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/

 

T
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 = 100. It has been shown earlier that no
transparency window occurs for the case of radiative
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broadening; that is, 

 

T

 

1

 

/

 

T

 

2

 

 = 0.5. The curves are labeled
by the value of the Rabi frequency associated with the
pump field. We see that, as the pump intensity is
increased, the transparency window becomes deeper
and (as a consequence of power broadening) becomes
wider. Most crucially, we note that the absorption at the
line center can be rendered arbitrarily small by using a
large value of the Rabi frequency.

The collection of two-level atoms also produces a
contribution to the refractive index of the material sys-

tems. This contribution is proportional to Re (

 

ω

 

 + 

 

δ

 

)
and is illustrated in Fig. 3 for the same conditions
treated in Fig. 2. We see that, in each case, there is a
rapid spectral variation of the refractive index near zero
detuning. This feature is the refractive response associ-
ated with the narrow dip in the absorption profile, as
required by Kramers–Kronig relations. This rapid spec-
tral variation of the refractive index gives rise to a large
contribution to the group index, as described by Eq. (1).
This contribution is shown in Fig. 4. The group index
normalized by the product 

 

ω
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1

 

 is shown in the figure. It
can be noted from any of Figs. 2–4 that the CPO feature
displays significant saturation and significant power
broadening. In fact, the power broadening of the CPO
resonance can be desirable for many practical applica-
tions, since the width of this resonance limits the max-
imum modulation bandwidth of the probe wave that can
be used under these conditions. The dependence of the
CPO linewidth on the field amplitude of the pump wave
is illustrated in Fig. 5. This linewidth was determined
numerically from the CPO absorption spectra of the
sort shown in Fig. 2.
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Fig. 2. Absorption profile experienced by the probe wave
for a centrally tuned pump wave for several values of the

pump-wave field strength. The quantity Im (ω + δ) is

plotted. The absorption coefficient experienced by the probe

beam is related to this quantity by α = 4π(ω/c)Im (ω + δ).
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Fig. 3. Contribution to the refractive index experienced by
the probe wave for a centrally tuned pump wave for several
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Often, the most important figure of merit for a slow-
light interaction used as a controllable optical delay line
is the maximum achievable time delay measured in
units of the pulse width of the modulated input probe
wave [16]. This quantity is also known as the normal-
ized maximum time delay. As mentioned above, the
minimum pulse length can be no smaller than the
inverse of the spectra width of the transparency win-
dow. We can estimate the value of the normalized delay
in terms of the quantities introduced above as follows.
The material contribution to the group delay experi-
enced in passing through a distance L of slow-light
material is given by

(5)

Since L can be no greater than the inverse of the absorp-
tion coefficient α at the probe frequency, and since the
input pulse duration T0 can be no smaller than ∆ν–1, we
find that the maximum value of the normalized group
delay is given by

(6)

The quantities ng, α, and ∆ν are given above, and, from
these quantities, we can calculate the normalized time
delay. This quantity is shown in Fig. 6. We see that time
delays of many pulse widths are predicted by the
present model.

Candidate systems in which to study these effects
include saturable absorber dyes of the sort used for
laser mode locking and Q switching, bulk semiconduc-
tors, semiconductor heterostructures, and atomic
vapors. Atomic vapors constitute a particularly attrac-
tive system for studying the fundamental features of
this interaction, because the dipole dephasing time T2
can be varied continuously by controlling the number
density of the atomic species or of any buffer gas. We
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also note that, even though the absorption of the probe
wave can be rendered negligibly small by the procedure
described in this paper, the pump wave will undergo
some absorption. It would thus be necessary to utilize
an experimental geometry in which multiple pump
beams are used or in which the probe beam passes
many times through a region irradiated by a single
pump beam. Such considerations could complicate the
verification of the predictions of this paper but do not
constitute any fundamental limitation on the method
described here.

In summary, we have shown that, by using a pump
beam sufficiently strong to render the material medium
essentially transparent to a probe beam, much greater
pulse delays than those observed thus far in a CPO sys-
tem should be possible.
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the probe wave for a centrally tuned pump wave for several
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